# Horizontal deflection transistors for 17", 70 kHz monitors 

Using Philips' CU15/35 drive transformer and BU4525AF/AX transistor

Most 17" monitor designs for PCs are required to operate up to frequencies of 70 kHz . This fact sheet describes Philips Semiconductors' solution for the horizontal deflection circuit. The circuit uses the new CU15/35 drive transformer from Philips Components and the new BU4525AF/AX deflection transistor from Philips Semiconductors.

The circuit employs a new drive transformer designed specifically for optimum switching of Philips' deflection
transistors in multi-frequency applications. The circuit is a complete solution to the horizontal output stage: the 'Hdrive' point can be attached to the output pin of most deflections/sync ICs. The concepts employed in this circuit are explained in the technical paper "Low power, low cost horizontal drive circuits with U15 Cores" (ETV/AN97002).


Fig. 1 Horizontal deflection circuit for 17 ", 70 kHz monitors
Component Values: $R 1=100 \Omega ; R 2=680 \Omega ; V b 1=12 \mathrm{~V} ; C c=10 \mu F, 16 \mathrm{~V} ; \mathrm{D} 1=1 \mathrm{~N} 4148 ; R 3=18 \mathrm{~K}$;
$R d=390 \Omega ; C d=10 \mathrm{nF}, 63 \mathrm{~V} ; \mathrm{Vb} 2=18 \mathrm{~V} ; C r=470 \mathrm{nF} ; D 4=1 \mathrm{~N} 4148 ; D 5=B Z X 79 C 6 \mathrm{~V} ; R p=39 \Omega, 1 \mathrm{~W} ; R s=27 \Omega$; Q1 = Philips BC337A; T1 = Philips CU15/35; Q2 = Philips BU4525AF/AX; D3 = BYV28-50; R4=47 $\Omega$; Cbe $=150 \mathrm{nF} ; R b e=10 \Omega$; $L c=99 \mu H ; C f b=5.6 n F, 2 k V ; D 2=$ Philips BY359X-1500S; Vcc $=130 \mathrm{~V}$


Fig. $2 I_{b}$ vs. time (1 A/div, $2 \mu \mathrm{~s} /$ div)


Fig. $3 I_{c}$ vs. time (2 A/div, $2 \mu \mathrm{~s} /$ div)


Fig. $4 V_{\text {ce max }}$ vs. time (200 V/div, $2 \mu \mathrm{~s} /$ div)

Figures 2 to 4 show the important waveforms in the horizontal deflection circuit. The base drive currents ( $l_{b 1} \& l_{b 2}$ ) have been optimized for an application with a $50 \%$ duty cycle running a peak $I_{c}$ of 7 A at 70 kHz . As can be seen, the peak $\mathrm{V}_{\mathrm{ce}}$ is 1150 V . The operating conditions are summarized in Table 1.

## Table 1 Operating conditions

| $\mathrm{I}_{\mathrm{b}}=1.6 \mathrm{~A}$ |
| :--- |
| $\mathrm{I}_{\mathrm{b} \text { off }}=-4.2 \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{c} \max }=7.0 \mathrm{~A} @ 70 \mathrm{kHz}$ |
| $\mathrm{V}_{\text {ce } \max }<1200 \mathrm{~V}$ |

This circuit can also be used for the lower frequency modes required, without modification. If the $50 \%$ duty cycle is to be altered, then small changes to $R_{p}$ and $R_{s}$ may be required to once again optimize the circuit.

The circuit employs some new concepts that have very important benefits for monitor design:

1. Low total dissipation: 'green design'.
2. Low component count.
3. Low-voltage, low-cost components.
4. Flexible design: easy to change for new designs.
5. Reliable circuit for fault and transient conditions.

The concepts discussed in this fact sheet can easily be applied to other multi-frequency monitor applications.

## Philips Semiconductors - a worldwide company

Australia: see South America
Australia: Tel. +61 29704 8141, Fax. +61 297048139
Austria: Tel. +43160101 1248, Fax. +431601011210
Belarus: Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Tel. +359 268 9211, Fax. +359 2689102
Canada: Tel. +1800234 7381, Fax. +18009430087
China/Hong Kong: Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Denmark: Tel. +45 3329 3333, Fax. +45 33293905
Finland: Tel. +3589615 800, Fax. +35896158 0920
France: Tel. +33 14099 6161, Fax. +33 140996427
Germany: Tel. +49 402353 60, Fax. +49 4023536300
Hungary: see Austria
India: Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: Tel. +62217940040 ext. 2501, Fax. +62217940080
Ireland: Tel. +35317640 000, Fax. +35317640200
Italy: Tel. +39 039203 6838, Fax +39 0392036800
Japan: Tel. +81 33740 5130, Fax. +81337405057
Korea: Tel. +822709 1412, Fax. +8227091415
Malaysia: Tel. +6037505214 , Fax. +6037574880
Mexico: Tel. +9-5 800234 7381, Fax. +9-5 8009430087 Middle East: see Italy

Netherlands: Tel. +31 4027 82785, Fax. +31 402788399 New Zealand: Tel. +649849 4160, Fax. +6498497811 Norway: Tel. +472274 8000, Fax. +4722748341 Pakistan: see Singapore Philippines: Tel. +632816 6380, Fax. +63 28173474 Poland: Tel. +4822612 2831, Fax. +48226122327 Portugal: see Spain
Romania: see Italy
Russia: Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Tel. +65350 2538, Fax. +65 2516500
Slovakia: see Austria
South Africa: Tel. +27 11471 5401, Fax. +27 114715398 South America: Tel. +55 11821 2333, Fax. +55118212382
Spain: Tel. +34 93301 6312, Fax. +34 933014107 Sweden: Tel. +46 85985 2000, Fax. +46 859852745 Switzerland: Tel. +411488 2741, Fax. +4114883263 Taiwan: Tel. +88622134 2886, Fax. +88622134283 Thailand: Tel. +662745 4090, Fax. +662 298 01931 Ukraine: Tel. +38044264 2776, Fax. +38044268046 United Kingdom: Tel. +44 208730 5000, Fax. +44 2087548421 United States: Tel. +1 800234 7381, Fax. +1 8009430087 Uruguay: see South America Vietnam: see Singapore Yugoslavia: Tel. +381 1162 5344, Fax. +381 11635777

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

PHILIPS

